ElasticFusion: Dense SLAM Without A Pose Graph
نویسندگان
چکیده
We present a novel approach to real-time dense visual SLAM. Our system is capable of capturing comprehensive dense globally consistent surfel-based maps of room scale environments explored using an RGB-D camera in an incremental online fashion, without pose graph optimisation or any postprocessing steps. This is accomplished by using dense frame-tomodel camera tracking and windowed surfel-based fusion coupled with frequent model refinement through non-rigid surface deformations. Our approach applies local model-to-model surface loop closure optimisations as often as possible to stay close to the mode of the map distribution, while utilising global loop closure to recover from arbitrary drift and maintain global consistency.
منابع مشابه
ElasticFusion: Real-time dense SLAM and light source estimation
We present a novel approach to real-time dense visual SLAM. Our system is capable of capturing comprehensive dense globally consistent surfel-based maps of room scale environments and beyond explored using an RGB-D camera in an incremental online fashion, without pose graph optimisation or any post-processing steps. This is accomplished by using dense frame-tomodel camera tracking and windowed ...
متن کاملPose Graph Compression for Laser-Based SLAM
The pose graph is a central data structure in graph-based SLAM approaches. It encodes the poses of the robot during data acquisition as well as spatial constraints between them. The size of the pose graph has a direct influence on the runtime and the memory requirements of a SLAM system since it is typically used to make data associations and within the optimization procedure. In this paper, we...
متن کاملHuman-in-the-Loop SLAM
Building large-scale, globally consistent maps is a challenging problem, made more difficult in environments with limited access, sparse features, or when using data collected by novice users. For such scenarios, where state-of-the-art mapping algorithms produce globally inconsistent maps, we introduce a systematic approach to incorporating sparse human corrections, which we term Human-in-the-L...
متن کاملEfficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction
State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors usually reduce drift in camera tracking by globally optimizing the estimated camera poses in real-time without simultaneously updating the reconstructed surface on pose changes. We propose an efficient on-the-fly surface correction method for globally consistent dense 3D reconstruction of large-scale scenes. Our appro...
متن کاملPose-Graph SLAM for Underwater Navigation
This chapter reviews the concept of pose-graph simultaneous localization and mapping (SLAM) for underwater navigation. We show that pose-graph SLAM is a generalized framework that can be applied to many diverse underwater navigation problems in marine robotics. We highlight three specific examples as applied in the areas of autonomous ship hull inspection and multi-vehicle cooperative navigation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015